Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.777
Filtrar
1.
Sci Rep ; 14(1): 2762, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307884

RESUMO

Lipoprotein apheresis (LA) is a therapeutic option for hyperlipoproteinemia(a) (hyper-Lp(a)) and atherosclerotic cardiovascular disease (ASCVD). LA improves blood rheology, reduces oxidative stress parameters and improves endothelial function. The underlying molecular mechanisms of LA beneficial effects are unknown, but it has been suggested that LA exhibits multiple activities beyond simply removing lipoproteins. We hypothesized that LA removes not only lipoproteins, but also extracellular vesicles (EVs). To test this hypothesis, we performed a prospective study in 22 patients undergoing LA for hyper-Lp(a) and ASCVD. Different EVs subtypes were measured before and directly after LA, and after 7 days. We used calibrated flow cytometry to detect total particle concentration (diameter > ~ 100 nm), total lipoproteins concentration (diameter > 200 nm, RI > 1.51), total EV concentration (diameter > 200 nm, RI < 1.41), concentrations of EVs derived from erythrocytes (CD235a+; diameter > 200 nm, RI < 1.41), leukocytes (CD45+; diameter > 200 nm, RI < 1.41) and platelets (CD61+, PEVs; diameter > 200 nm, RI < 1.41). LA reduced the concentrations of all investigated EVs subtypes and lipoproteins. Lp(a) concentration was lowered by 64.5% [(58% - 71%); p < 0.001]. Plasma concentrations of EVs > 200 nm in diameter derived from platelets (CD61 +), leukocytes (CD45+) and erythrocytes (CD235a+) decreased after single LA procedure by 42.7% [(12.8-54.7); p = 0.005], 42.6% [(29.7-54.1); p = 0.030] and 26.7% [(1.0-62.7); p = 0.018], respectively, compared to baseline. All EV subtypes returned to the baseline concentrations in blood plasma after 7 days. To conclude, LA removes not only Lp(a), but also cell-derived EVs, which may contribute to LA beneficial effects.


Assuntos
Aterosclerose , Remoção de Componentes Sanguíneos , Vesículas Extracelulares , Hiperlipoproteinemias , Humanos , Estudos Prospectivos , Lipoproteína(a) , Remoção de Componentes Sanguíneos/métodos , Aterosclerose/terapia
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1293-1298, 2023 Dec 15.
Artigo em Chinês | MEDLINE | ID: mdl-38112150

RESUMO

This report presents a case of a male infant, aged 32 days, who was admitted to the hospital due to 2 days of bloody stools and 1 day of fever. Upon admission, venous blood samples were collected, which appeared pink. Blood biochemistry tests revealed elevated levels of triglycerides and total cholesterol. The familial whole genome sequencing revealed a compound heterozygous variation in the LPL gene, with one variation inherited from the father and the other from the mother. The patient was diagnosed with lipoprotein lipase deficiency-related hyperlipoproteinemia. Acute symptoms including bloody stools, fever, and bloody ascites led to the consideration of acute pancreatitis, and the treatment involved fasting, plasma exchange, and whole blood exchange. Following the definitive diagnosis based on the genetic results, the patient was given a low-fat diet and received treatment with fat-soluble vitamins and trace elements, as well as adjustments to the feeding plan. After a 4-week hospitalization, the patient's condition improved and he was discharged. Follow-up showed a decrease in triglycerides and total cholesterol levels. At the age of 1 year, the patient's growth and psychomotor development were normal. This article emphasizes the multidisciplinary diagnosis and treatment of familial hyperlipoproteinemia presenting with symptoms suggestive of acute pancreatitis, including bloody ascites, in the neonatal period.


Assuntos
Hiperlipoproteinemia Tipo I , Hiperlipoproteinemias , Pancreatite , Humanos , Lactente , Masculino , Doença Aguda , Ascite , Colesterol , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/genética , Lipase Lipoproteica/genética , Triglicerídeos
3.
Dtsch Med Wochenschr ; 148(23): e120-e146, 2023 11.
Artigo em Alemão | MEDLINE | ID: mdl-37949074

RESUMO

Clinically, disorders of lipid metabolism often remain without symptoms. Typical skin lesions, however, can be indicative. Secondary hyperlipoproteinemias (HLP) are more common than primary hyperlipoproteinemias; they can (partially) be improved by treating the underlying disease. Basic diagnostics consist of the determination of cholesterol, triglycerides, LDL cholesterol and HDL cholesterol. To exclude secondary HLP, glucose, HbA1C, TSH, transaminases, creatinine, urea, protein and protein in the urine are useful. Since virtually all routine methods for LDL-C are biased by high triglycerides, lipoprotein electrophoresis is indicated for triglycerides above 400 mg/dl (4.7 mmol/l). Primary HLPs have known or yet unknown genetic causes. Primary hyperlipidemias should be taken into consideration especially in young patients with an LDL cholesterol concentration are above 190 mg/dl (4.9 mmol/l) and/or triglycerides above 400 mg/dl (10 mmol/l) and secondary HLP (obesity, alcohol, diabetes mellitus, kidney disease) is excluded. The basic diagnostics is meaningfully extended by the measurement of lipoprotein (a) (Lp(a)). It is indicated in moderate and high risk of vascular disease, progression of atherosclerosis in "well-controlled" LDL cholesterol, familial clustering of atherosclerosis or high Lp(a), evidence for elevated Lp(a) coming from lipoprotein electrophoresis, aortic stenosis and in patients in whom statins have a poor effect. Genetic diagnostics needs to be considered if primary HLP is suspected. It is most frequently conducted for suspected familial hypercholesterolemia and has already been recommended in guidelines.


Assuntos
Aterosclerose , Hiperlipidemias , Hiperlipoproteinemias , Humanos , LDL-Colesterol , Metabolismo dos Lipídeos , Triglicerídeos , HDL-Colesterol
4.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686428

RESUMO

Lipoprotein(a) [Lp(a)] is a well-established risk factor for cardiovascular disease, predisposing to major cardiovascular events, including coronary heart disease, stroke, aortic valve calcification and abdominal aortic aneurysm. Lp(a) is differentiated from other lipoprotein molecules through apolipoprotein(a), which possesses atherogenic and antithrombolytic properties attributed to its structure. Lp(a) levels are mostly genetically predetermined and influenced by the size of LPA gene variants, with smaller isoforms resulting in a greater synthesis rate of apo(a) and, ultimately, elevated Lp(a) levels. As a result, serum Lp(a) levels may highly vary from extremely low to extremely high. Hyperlipoproteinemia(a) is defined as Lp(a) levels > 30 mg/dL in the US and >50 mg/dL in Europe. Because of its association with CVD, Lp(a) levels should be measured at least once a lifetime in adults. The ultimate goal is to identify individuals with increased risk of CVD and intervene accordingly. Traditional pharmacological interventions like niacin, statins, ezetimibe, aspirin, PCSK-9 inhibitors, mipomersen, estrogens and CETP inhibitors have not yet yielded satisfactory results. The mean Lp(a) reduction, if any, is barely 50% for all agents, with statins increasing Lp(a) levels, whereas a reduction of 80-90% appears to be required to achieve a significant decrease in major cardiovascular events. Novel RNA-interfering agents that specifically target hepatocytes are aimed in this direction. Pelacarsen is an antisense oligonucleotide, while olpasiran, LY3819469 and SLN360 are small interfering RNAs, all conjugated with a N-acetylgalactosamine molecule. Their ultimate objective is to genetically silence LPA, reduce apo(a) production and lower serum Lp(a) levels. Evidence thus so far demonstrates that monthly subcutaneous administration of a single dose yields optimal results with persisting substantial reductions in Lp(a) levels, potentially enhancing CVD risk reduction. The Lp(a) reduction achieved with novel RNA agents may exceed 95%. The results of ongoing and future clinical trials are eagerly anticipated, and it is hoped that guidelines for the tailored management of Lp(a) levels with these novel agents may not be far off.


Assuntos
Estenose da Valva Aórtica , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemias , Adulto , Humanos , Apoproteína(a) , Lipoproteína(a) , Apolipoproteínas A
5.
Clin Ther ; 45(8): e171-e175, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442657

RESUMO

PURPOSE: Hyperlipoproteinemia (a) is a prevalent complication in dialysis patients, with no valid treatment strategy. The aim of this narrative review was to investigate the clinical significance of hyperlipoproteinemia (a) and phytoestrogen therapy in dialysis patients. METHODS: A comprehensive literature search of the published data was performed regarding the effects of phytoestrogen therapy on hyperlipoproteinemia (a) in dialysis patients. FINDINGS: Hyperlipoproteinemia (a) occurs in dialysis patients due to decreased catabolism and increased synthesis of lipoprotein (a) [Lp(a)]. A few clinical trials have studied the effects of phytoestrogens on serum Lp(a). All studies of dialysis patients or nonuremic individuals with hyperlipoproteinemia (a), except one, showed that phytoestrogens could significantly reduce serum Lp(a) levels. However, all investigations of phytoestrogen therapy in individuals with normal serum Lp(a) levels showed that it had no effect on serum Lp(a). Phytoestrogens seem to have effects similar to those of estrogen in lowering Lp(a) concentrations. IMPLICATIONS: Considering the high prevalence of hyperlipoproteinemia (a) in dialysis patients, phytoestrogen therapy is a reasonable approach for reducing serum Lp(a) levels and its complications in these patients.


Assuntos
Hiperlipoproteinemias , Fitoestrógenos , Humanos , Fitoestrógenos/uso terapêutico , Diálise Renal/efeitos adversos , Lipoproteína(a) , Hiperlipoproteinemias/tratamento farmacológico
6.
Curr Atheroscler Rep ; 25(7): 391-404, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37273067

RESUMO

PURPOSE OF REVIEW: Familial hypercholesterolemia (FH) and hyperlipoproteinemia(a) are relatively common disorders, posing a significant health burden due to increased risk of atherosclerotic cardiovascular disease (ASCVD). Development of electronic health record-based strategies with a linkage to the genetic test results has increased awareness, detection, and control of heritable lipid disorders. This review attempts to critically examine available data to provide a summary of the current evidence for lipoprotein apheresis in FH and elevated lipoprotein(a) (Lp(a)). REVIEW FINDINGS: Availability and indications for lipoprotein apheresis vary across the globe. On average, greater than 60% of atherogenic apoB-containing lipoproteins are immediately reduced following a single procedure, translating in substantial reduction of incident ASCVD events, and preventing accelerated vascular aging. Simultaneous lipid-lowering therapy targeting low-density lipoprotein (LDL) and Lp(a) enhances the efficacy of lipoprotein apheresis. Lipoprotein apheresis alters the proteomics of the lipoprotein particles, including reduction in the concentration of the oxidized-LDL and Lp(a) particles, and proinflammatory apoE bound to HDL particles and remnant lipoproteins. Other effects attributed to lipoprotein apheresis include improvement in blood rheology, endothelial function, microvascular flow, myocardial perfusion, reduction in circulating inflammatory markers. Development of lipoprotein apheresis registries provides data on benefits, challenges, and barriers to inform pertinent healthcare policies. Lipoprotein apheresis is a safe and effective procedure for lowering cholesterol in patients with combined and isolated FH and elevated Lp(a). It reduces the burden of ASCVD and improves long-term prognosis. A team approach is required by the patient, medical staff, and healthcare provider to initiate and maintain a lipoprotein apheresis program.


Assuntos
Aterosclerose , Remoção de Componentes Sanguíneos , Hiperlipoproteinemia Tipo II , Hiperlipoproteinemias , Humanos , Hiperlipoproteinemia Tipo II/terapia , Remoção de Componentes Sanguíneos/métodos , Colesterol , Hiperlipoproteinemias/terapia , Aterosclerose/prevenção & controle , Aterosclerose/etiologia , Lipoproteína(a)
7.
JAMA ; 329(13): 1078-1087, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877807

RESUMO

Importance: In patients with coronary artery disease, some guidelines recommend initial statin treatment with high-intensity statins to achieve at least a 50% reduction in low-density lipoprotein cholesterol (LDL-C). An alternative approach is to begin with moderate-intensity statins and titrate to a specific LDL-C goal. These alternatives have not been compared head-to-head in a clinical trial involving patients with known coronary artery disease. Objective: To assess whether a treat-to-target strategy is noninferior to a strategy of high-intensity statins for long-term clinical outcomes in patients with coronary artery disease. Design, Setting, and Participants: A randomized, multicenter, noninferiority trial in patients with a coronary disease diagnosis treated at 12 centers in South Korea (enrollment: September 9, 2016, through November 27, 2019; final follow-up: October 26, 2022). Interventions: Patients were randomly assigned to receive either the LDL-C target strategy, with an LDL-C level between 50 and 70 mg/dL as the target, or high-intensity statin treatment, which consisted of rosuvastatin, 20 mg, or atorvastatin, 40 mg. Main Outcomes and Measures: Primary end point was a 3-year composite of death, myocardial infarction, stroke, or coronary revascularization with a noninferiority margin of 3.0 percentage points. Results: Among 4400 patients, 4341 patients (98.7%) completed the trial (mean [SD] age, 65.1 [9.9] years; 1228 females [27.9%]). In the treat-to-target group (n = 2200), which had 6449 person-years of follow-up, moderate-intensity and high-intensity dosing were used in 43% and 54%, respectively. The mean (SD) LDL-C level for 3 years was 69.1 (17.8) mg/dL in the treat-to-target group and 68.4 (20.1) mg/dL in the high-intensity statin group (n = 2200) (P = .21, compared with the treat-to-target group). The primary end point occurred in 177 patients (8.1%) in the treat-to-target group and 190 patients (8.7%) in the high-intensity statin group (absolute difference, -0.6 percentage points [upper boundary of the 1-sided 97.5% CI, 1.1 percentage points]; P < .001 for noninferiority). Conclusions and Relevance: Among patients with coronary artery disease, a treat-to-target LDL-C strategy of 50 to 70 mg/dL as the goal was noninferior to a high-intensity statin therapy for the 3-year composite of death, myocardial infarction, stroke, or coronary revascularization. These findings provide additional evidence supporting the suitability of a treat-to-target strategy that may allow a tailored approach with consideration for individual variability in drug response to statin therapy. Trial Registration: ClinicalTrials.gov Identifier: NCT02579499.


Assuntos
Atorvastatina , LDL-Colesterol , Doença da Artéria Coronariana , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemias , Rosuvastatina Cálcica , Idoso , Feminino , Humanos , LDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Infarto do Miocárdio/etiologia , Acidente Vascular Cerebral/etiologia , Resultado do Tratamento , Hiperlipoproteinemias/sangue , Hiperlipoproteinemias/complicações , Hiperlipoproteinemias/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Rosuvastatina Cálcica/administração & dosagem , Rosuvastatina Cálcica/efeitos adversos , Rosuvastatina Cálcica/uso terapêutico , Atorvastatina/administração & dosagem , Atorvastatina/efeitos adversos , Atorvastatina/uso terapêutico
8.
Ther Apher Dial ; 26 Suppl 1: 53-63, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36584880

RESUMO

METHODS: Three hundred thirty-nine patients (230 men, 109 women) treated with lipoprotein apheresis in Saxony, Germany, in 2018 are described in terms of age, lipid pattern, risk factors, cardiovascular events, medication, and number of new admissions since 2014, and the data are compared with figures from 2010 to 2013. RESULTS: Patients were treated by 45.5 physicians in 16 lipoprotein apheresis centers. With about 10 patients per 100 000 inhabitants, the number of patients treated with lipoprotein apheresis in Saxony is twice as high as in Germany as a whole. The median treatment time was 3 years. Almost all patients had hypertension; type 2 diabetes mellitus was seen significantly more often in patients with low Lipoprotein(a). Cardiovascular events occurred in almost all patients before initiation of lipoprotein apheresis, under apheresis therapy the cardiovascular events rate was very low in this high-risk group. For some cardiovascular regions even no events could be observed. CONCLUSIONS: The importance of lipoprotein apheresis in Saxony had been increasing from 2010 to 2018.


Assuntos
Remoção de Componentes Sanguíneos , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Masculino , Biomarcadores , Remoção de Componentes Sanguíneos/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/complicações , Hiperlipoproteinemias/terapia , Hiperlipoproteinemias/complicações , Lipoproteína(a)/análise , Lipoproteína(a)/química , Resultado do Tratamento , Metabolismo dos Lipídeos , Fatores de Risco Cardiometabólico
9.
Ter Arkh ; 94(4): 479-484, 2022 May 26.
Artigo em Russo | MEDLINE | ID: mdl-36286796

RESUMO

BACKGROUND: Hyperlipoproteinemia (a) is an independent and cause risk factor for atherosclerotic cardiovascular diseases (ASCVD). The correlation between lipoprotein (a) Lp(a) and inflammation in the vessel wall was actively studied during the past few years. C-reactive protein (CRP) plays an important role in ASCVD. AIM: To analyze the relationship between hyperlipoproteinemia (a), inflammatory markers, and the early development of stenosing atherosclerosis (AS) in several vascular pools. MATERIALS AND METHODS: 76 patients, 55 men aged 18 to 55 years and 21women 18 to 60 years, with the results of instrumental examination of coronary, carotid and lower extremities vascular pools were enrolled. Three groups: with stenosing (50%) AS of only one (group 1, n=29); two or three (group 2, n=21) vascular pools. 26 patients without coronary heart disease and AS were included in the control group. All patients in groups 1 and 2 and 65% of those in the control group took statins. The concentrations of Lp(a), CRP, lipids and blood count were determined. RESULTS: The patients of the three groups did not differ in age. In the groups with AS (79% in group 1 and 85% in group 2), there were more men (relative to 54% in the control group). Diabetes mellitus was more common only in patients with multifocal AS. The absolute number of blood monocytes and leukocytes, the neutrophil-lymphocyte ratio, as well as Lp(a) level were higher in patients of groups 1 and 2 relative to the control. The maximum Lp(a) level (median [25%; 75%]) was observed in patients with lesions of two or more vascular pools vs the control group (49 [4; 96] mg/dL, vs 10 [4; 21] mg/dL, p=0.02). The CRP level was significant elevated in patients from group 2 7.2 [4.0; 9.7] mg/L, relative to group 1 2.5 [1.0; 4.7] mg/L, and the control group 2.9 [1.2; 4.9] mg/L, p0.05. The Lp(a) and CRP concentration, or the presence of diabetes mellitus in patients, regardless of other risk factors, were associated with severe stenosing AS in young and middle age. CONCLUSION: An elevated concentration of Lp(a) (30 mg/dL) determines the presence of both isolated and multifocal stenosing AS in the examined patients. A simultaneous increase in the concentration of both Lp(a) and CRP, as well as the presence of diabetes mellitus, are associated with the premature development of stenosing atherosclerotic lesions in several vascular regions at once. Measurement of these predictors in young and middle-aged patients makes it possible to use them as biochemical markers to assess the likelihood of multifocal lesions of the vascular pool.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemias , Humanos , Masculino , Pessoa de Meia-Idade , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Aterosclerose/etiologia , Biomarcadores , Proteína C-Reativa , Lipoproteína(a) , Prevalência , Fatores de Risco , Feminino , Adolescente , Adulto Jovem , Adulto
11.
Dtsch Med Wochenschr ; 147(10): e50-e61, 2022 04.
Artigo em Alemão | MEDLINE | ID: mdl-35545064

RESUMO

Congenital disorders of lipid metabolism are characterised by LDL-C concentrations > 190 mg/dl (4.9 mM) and/or triglycerides > 200 mg/dl (2.3 mM) in young individuals after having excluded a secondary hyperlipoproteinemia. Further characteristics of this primary hyperlipoproteinemia are elevated lipid values or premature myocardial infarctions within families or xantelasms, arcus lipoides, xanthomas and abdominal pain. This overview summarises our current knowledge of etiology and pathogenesis of primary hyperlipoproteinemia.


Assuntos
Hiperlipoproteinemia Tipo II , Hiperlipoproteinemias , Xantomatose , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemias/complicações , Metabolismo dos Lipídeos/genética , Triglicerídeos , Xantomatose/complicações , Xantomatose/genética
13.
JAMA ; 327(17): 1679-1687, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35368052

RESUMO

Importance: Lipoprotein(a) (Lp[a]) is an important risk factor for atherothrombotic cardiovascular disease and aortic stenosis, for which there are no treatments approved by regulatory authorities. Objectives: To assess adverse events and tolerability of a short interfering RNA (siRNA) designed to reduce hepatic production of apolipoprotein(a) and to assess associated changes in plasma concentrations of Lp(a) at different doses. Design, Setting, and Participants: A single ascending dose study of SLN360, an siRNA targeting apolipoprotein(a) synthesis conducted at 5 clinical research unit sites located in the US, United Kingdom, and Australia. The study enrolled adults with Lp(a) plasma concentrations of 150 nmol/L or greater at screening and no known clinically overt cardiovascular disease. Participants were enrolled between November 18, 2020, and July 21, 2021, with last follow-up on December 29, 2021. Interventions: Participants were randomized to receive placebo (n = 8) or single doses of SLN360 at 30 mg (n = 6), 100 mg (n = 6), 300 mg (n = 6), or 600 mg (n = 6), administered subcutaneously. Main Outcomes and Measures: The primary outcome was evaluation of safety and tolerability. Secondary outcomes included change in plasma concentrations of Lp(a) to a maximum follow-up of 150 days. Results: Among 32 participants who were randomized and received the study intervention (mean age, 50 [SD, 13.5] years; 17 women [53%]), 32 (100%) completed the trial. One participant experienced 2 serious adverse event episodes: admission to the hospital for headache following SARS-CoV-2 vaccination and later for complications of cholecystitis, both of which were judged to be unrelated to study drug. Median baseline Lp(a) concentrations were as follows: placebo, 238 (IQR, 203-308) nmol/L; 30-mg SLN360, 171 (IQR, 142-219) nmol/L; 100-mg SLN360, 217 (IQR, 202-274) nmol/L; 300-mg SLN360, 285 (IQR, 195-338) nmol/L; and 600-mg SLN360, 231 (IQR, 179-276) nmol/L. Maximal median changes in Lp(a) were -20 (IQR, -61 to 3) nmol/L, -89 (IQR, -119 to -61) nmol/L, -185 (IQR, -226 to -163) nmol/L, -268 (IQR, -292 to -189) nmol/L, and -227 (IQR, -270 to -174) nmol/L, with maximal median percentage changes of -10% (IQR, -16% to 1%), -46% (IQR, -64% to -40%), -86% (IQR, -92% to -82%), -96% (IQR, -98% to -89%), and -98% (IQR, -98% to -97%), for the placebo group and the 30-mg, 100-mg, 300-mg, and 600-mg SLN360 groups, respectively. The duration of Lp(a) lowering was dose dependent, persisting for at least 150 days after administration. Conclusions and Relevance: In this phase 1 study of 32 participants with elevated Lp(a) levels and no known cardiovascular disease, the siRNA SLN360 was well tolerated, and a dose-dependent lowering of plasma Lp(a) concentrations was observed. The findings support further study to determine the safety and efficacy of this siRNA. Trial Registration: ClinicalTrials.gov Identifier: NCT04606602; EudraCT Identifier: 2020-002471-35.


Assuntos
Apoproteína(a) , Hiperlipoproteinemias , RNA Interferente Pequeno , Adulto , Apoproteína(a)/efeitos adversos , Apoproteína(a)/biossíntese , Apoproteína(a)/sangue , Doenças Cardiovasculares/etiologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Hiperlipoproteinemias/sangue , Hiperlipoproteinemias/genética , Hiperlipoproteinemias/metabolismo , Hiperlipoproteinemias/terapia , Injeções Subcutâneas , Lipoproteína(a)/efeitos adversos , Lipoproteína(a)/biossíntese , Lipoproteína(a)/sangue , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/uso terapêutico , Resultado do Tratamento
15.
Lab Med ; 53(5): e117-e119, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041007

RESUMO

The polygenic variety of chylomicronemia occurs in adults in whom factors such as obesity, diabetes, alcoholism, renal disease, and certain drugs can precipitate chylomicronemia. A rare cause of polygenic chylomicronemia is hyperlipoproteinemia type 3 (HLP3). We report on a 54-year-old male who presented with chylomicronemia with triglycerides (TG) >2000 mg/dL. From admission, the ratio of total cholesterol to total triglycerides was not below 0.2 but was closer to 0.5, suggesting that his condition was not classic chylomicronemia. We confirmed that the patient had HLP3 based on his very-low-density lipoprotein cholesterol (VLDL-C)/TG ratio, which was ≥0.3, and lipoprotein electrophoresis showing a broad beta band. Because he was not responsive to initial therapy, we considered an interferent impairing lipolysis and TG reduction. The interferent was an M-protein that may also have falsely elevated both apolipoprotein-B and direct-LDL-C levels. In this case study, we report on a patient with chylomicronemia resulting from HLP3 complicated by a circulating M-protein.


Assuntos
Hiperlipoproteinemias , Obesidade , Adulto , Colesterol , Humanos , Masculino , Pessoa de Meia-Idade , Triglicerídeos
18.
Am J Med Sci ; 364(6): 758-765, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34023310

RESUMO

BACKGROUND: Elevated blood lipid level, also known as hyperlipoproteinemia (HLP), is the most common metabolic disorder in the general population. According to US National Heart Institute data, about 36% of adults and 10% of children aged 9 to 12 have elevated cholesterol levels. The risk of ischemic heart disease increases by 2-3% with every 1% increase in total cholesterol levels. Therefore, men aged 55-65 with a 10% increase in total cholesterol have about 38% increased ischemic heart disease mortality. The study's main objective is to determine the occurrence of thrombotic complications in patients in whom first-generation drug-eluting stents are implanted and how these events are influenced by the presence of HLP. METHODS: The study is retrospective, clinical, and non-interventional with a five-year follow-up period for each patient. Initially, 800 patients undergoing index percutaneous coronary angioplasty with sirolimus-eluting and paclitaxel-eluting stent implantation were enrolled. Clinical data collected included cardiac disorders, the presence of diabetes mellitus, hyperlipoproteinemia, and smoking as a risk factor. In the examined group of patients, stent thrombosis was monitored according to Academic Research Consortium (ARC) criteria. RESULTS: The study included 800 patients who underwent percutaneous coronary angioplasty index. At the end of the follow-up period, 701 patients (87.6%) completed the clinical trial and were included in the statistical analysis. Stent thrombosis, determined according to ARC criteria, was reported as 'definitive stent thrombosis' in 22 patients (3.06%), 'probable stent thrombosis' in 1 patient (0.14%), and 'possible stent thrombosis' in 1 patient (0.14%). Of the 404 patients with HLP, 120 patients had a total cholesterol value >300 mg/dL. Twenty patients with definitive stent thrombosis had cholesterol >300 mg/dL. Patients with probable and possible stent thrombosis did not have HLP. A comparison of patients with stent thrombosis, with HLP and without HLP, revealed a statistically significant difference (16.67% vs. 1.35%, p <0.001). Comparing patients with unstable angina pectoris, with cholesterol value >300 mg/dL and without HLP, a statistically significant difference was observed (71.7% vs. 17.2%, p <0.001). CONCLUSIONS: We report on the long-term follow up of patients with stent thrombosis after drug-eluting stent insertion with and without HLP. The results suggest that HLP influences the development of coronary disease, with a significant influence on complications following percutaneous coronary intervention.


Assuntos
Stents Farmacológicos , Hiperlipoproteinemias , Trombose , Humanos , Stents Farmacológicos/efeitos adversos , Seguimentos , Hiperlipoproteinemias/complicações , Paclitaxel , Estudos Retrospectivos , Trombose/etiologia , Resultado do Tratamento , Adulto
19.
Rev. Hosp. Clin. Univ. Chile ; 33(2): 97-107, 2022. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-1401167

RESUMO

Chylomicronemia syndrome is a metabolic condition characterized by severe hypertriglyceridemia and fasting chylomicronemia, secondary to an alteration in the ability to metabolize triglycerides. It can respond to different etiologies, the most frequent being multifactorial. Familial chylomicronemia syndrome, on the other hand, represents an infrequent cause of chylomicronemia syndrome, showing an autosomal recessive inheritance pattern. It's caused by pathogenic variants in genes related to chylomicron's metabolism, mainly LPL1 gene. One of the main associated risks is the occurrence of acute pancreatitis, which can also have a recurrent course. The primary therapy goal in patients with this condition is prevention of pancreatitis and related comorbidities. The treatment basis consists in reduce chylomicron formation by restriction of dietary fat, in association with physical activity and pharmacologic therapy. It is important to distinguish the etiology of chylomicronemia syndrome since it has repercussions in terms of response to treatment, complications, and recurrence risk. (AU)


Assuntos
Humanos , Animais , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hiperlipoproteinemias/genética , Hiperlipoproteinemias/diagnóstico , Hiperlipoproteinemias/tratamento farmacológico , Hiperlipoproteinemias/terapia , Hiperlipoproteinemia Tipo I/genética
20.
Lipids Health Dis ; 20(1): 76, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315495

RESUMO

BACKGROUND: Lipoprotein (a) [Lp(a)] is a proven independent risk factor for coronary heart disease. It is also associated with type 2 diabetes mellitus (T2DM). However, the correlation between Lp(a) and T2DM has not been clearly elucidated. METHODS: This was a retrospective cohort study involving 9248 T2DM patients and 18,496 control individuals (1:2 matched). Patients were randomly selected from among inpatients in the Second Affiliated Hospital of Nanchang University between 2006 and 2017. Clinical characteristics were compared between the two groups. Spearman rank-order correlation coefficients were used to evaluate the strength and direction of monotonic associations of serum Lp(a) with other metabolic risk factors. Binary logistic regression analysis was used to establish the correlation between Lp(a) levels and T2DM risk. RESULTS: The median Lp(a) concentration was lower in T2DM patients than in controls (16.42 vs. 16.88 mg/dL). Based on four quartiles of Lp(a) levels, there was a decrease in T2DM risk from 33.7% (Q1) to 31.96% (Q4) (P for trend < 0.0001). Then, Lp(a) levels > 28.72 mg/dL (Q4) were associated with a significantly lower T2DM risk in the unadjusted model [0.924 (0.861, 0.992), P = 0.030]. Similar results were obtained in adjusted models 1 [Q4, 0.925 (0.862, 0.993), P = 0.031] and 2 [Q4, 0.919 (0.854, 0.990), P = 0.026]. Furthermore, in the stratified analysis, Q4 of Lp(a) was associated with a significantly lower T2DM risk among men [0.813 (0.734, 0.900), P < 0.001] and those age > 60 years [0.819 (0.737, 0.910), P < 0.001]. In contrast, the low-density lipoprotein cholesterol (LDL-C) levels and coronary heart disease (CHD) did not impact these correlations between Lp(a) and diabetes. CONCLUSIONS: There is an inverse association between Lp(a) levels and T2DM risk in the Chinese population. Male patients, especially those aged more than 60 years with Lp(a) > 28.72 mg/dL, are low-risk T2DM individuals, regardless of LDL-C levels and CHD status.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Hiperlipoproteinemias/complicações , Lipoproteína(a)/sangue , Povo Asiático/estatística & dados numéricos , Estudos de Casos e Controles , China/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Hiperlipoproteinemias/sangue , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...